LECTURE NOTES

for

MULTIWAVELETS AND THEIR APPLICATIONS

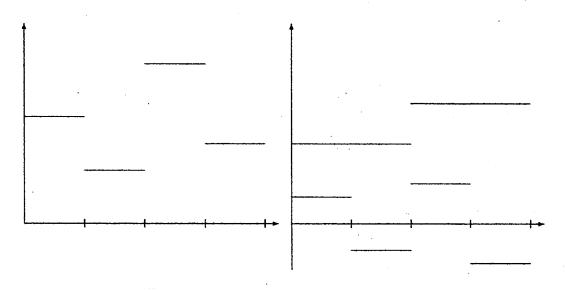
by

Peter R. Massopust¹
Applied and Numerical Mathematics Department
Sandia National Laboratories
Albuquerque, New Mexico 87185-1110
prmasso@cs.sandia.gov

Allegheny Section of the MAA Allegheny College, Meadville, Pennsylvania June 1997

¹Partially supported by NSF grant DMS-9503282. This work was also supported by Sandia National Laboratories. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy (DOE) under Contract DE-AC04-94AL85000.

1 Introduction to Scaling Vectors and Multiwavelets



$$f_2 = f_1 + g_2$$

$$V_2 = V_1 \oplus W_2$$

Haar Basis:
$$\phi^H(x) =$$

$$\psi^H(x) =$$

$$f_2(x) = a \phi^H(4x) + b \phi^H(4x - 1) + c \phi^H(4x - 2) + d \phi^H(4x - 3)$$

$$= \left(\frac{a+b}{2}\right) \phi^H(2x) + \left(\frac{c+d}{2}\right) \phi^H(2x - 1)$$

$$+ \left[a - \frac{a+b}{2}\right] \psi^H(2x) + \left[d - \frac{c+d}{2}\right] \psi^H(2x - 1)$$

$$\phi^{H}(x) = \phi^{H}(2x) + \phi^{H}(2x-1)$$

$$\psi^{H}(x) = \phi^{H}(2x) - \phi^{H}(2x - 1).$$

Two-Scale Dilation Equations/Refinement Equations

 ϕ^H : Haar scaling function ψ^H : Haar wavelet

If $f(x) \in L^2(\mathbb{R})$, i.e., $||f||_2 := \sqrt{\int_{-\infty}^{+\infty} |f(x)|^2 dx} < \infty$, then

$$f(x) = \sum_{k=-\infty}^{+\infty} \sum_{\ell=-\infty}^{+\infty} c_{k\ell} \psi^{H}(2^{k}x - \ell),$$

where $\mathbf{c} := (c_{k\ell}) \in \ell^2(\mathbb{R})$, that is, $\sum_{k=-\infty}^{+\infty} \sum_{\ell=-\infty}^{+\infty} |c_{k\ell}|^2 < \infty$.

$$L^2(\mathbb{R}) = \bigoplus_{k=-\infty}^{+\infty} W_k$$

with

$$W_k = \operatorname{cl}_{L^2(\mathbb{R})} \operatorname{span} \left\{ \psi_{k\ell}^H = 2^{k/2} \psi^H (2^k \cdot -\ell) \, | \, k, \ell \in \mathbb{Z} \right\}$$

Wavelet Spaces

$$V_k = \operatorname{cl}_{L^2(\mathbb{R})} \operatorname{span} \left\{ \phi_{k\ell}^H = 2^{k/2} \phi^H (2^k \cdot -\ell) \, | \, k, \ell \in \mathbb{Z} \right\}$$

Two-Scale Principal Shift-Invariant Spaces with generator ϕ^H

Note that

$$V_k = V_{k-1} \oplus W_k, \quad k \in \mathbb{Z}$$

fine scale \rightarrow coarse scale \oplus detail correction

Properties of the Haar Scaling Function and Wavelet

- $\bullet \int_{-\infty}^{+\infty} \phi^H(x) dx = 1$
- Vanishing Moment: $\int_{-\infty}^{+\infty} \psi^H(x) dx = 0$
- Two-Scale Dilation Equations:

$$\phi^{H}(x) = \sum_{\ell} g_{\ell} \phi^{H}(2x - \ell)$$

$$\psi^{H}(x) = \sum_{\ell} h_{\ell} \phi^{H}(2x - \ell)$$

(Here
$$g_0 = g_1 = h_0 = -h_1 = 1.$$
)

- Compact Support: both ϕ^H and ψ^H vanish outside a closed interval of finite length;
- Smoothness: ϕ^H and ψ^H piecewise continuous;
- Orthogonality:

$$\int_{-\infty}^{+\infty} \psi^H(2^k x - \ell) \psi^H(2^m x - n) dx = \begin{cases} 2^k & k = m \text{ and } \ell = n \\ 0 & \text{otherwise;} \end{cases}$$

$$\int_{-\infty}^{+\infty} \phi^H(2^k x - \ell) \phi^H(2^k x - n) dx = \begin{cases} 2^k & \ell = n \\ 0 & \text{otherwise;} \end{cases}$$

$$\int_{-\infty}^{+\infty} \phi^H(2^k x - \ell) \psi^H(2^k x - n) dx = 0;$$

- The one-parameter family $\{\phi^H(\cdot \ell) \mid \ell \in \mathbb{Z}\}$ forms an orthogonal basis of V_0 . (Thus, the one-parameter family $\{\phi^H(2^k \cdot \ell) \mid \ell \in \mathbb{Z}\}$ an orthogonal basis of V_k , for $k \in \mathbb{Z}$.)
- The two-parameter family $\{\psi_{k\ell}^H := 2^{k/2}\psi(2^k \cdot -\ell) \mid k,\ell \in \mathbb{Z}\}$ forms an orthonormal basis of $L^2(\mathbb{R})$.

Example 1.1 (Hat-function) Let

$$h(x) := \begin{cases} 1 - |x|, & |x| \le 1 \\ 0, & otherwise. \end{cases}$$

The hat function is a linear B-spline with knots $\{(-1,0),(0,1),(1,0)\}$)

Define the principal shift-invariant space $V_0[h]$ with generator h by

$$V_0[h] := \operatorname{cl}_{L^2(\mathbb{R})} \operatorname{span} \{h(\cdot - \ell) \mid \ell \in \mathbb{Z}\}$$

Exercise: Show that h generates an MRA!

Short-hand notation: $\tau[f] := \text{span } \{f(\cdot - \ell) \mid \ell \in \mathbb{Z}\} \text{ and } \sigma[f] := \text{cl}_{L^2(\mathbb{R})}\tau[f].$

Note that

$$h(x) = \frac{1}{2}h(2x-1) + h(2x) + \frac{1}{2}h(2x+1) \quad \text{(Verify this!)}$$
 (1.3)

but

$$\int_{-1}^{1} h(x)h(x\pm 1)dx = 1/6 \neq 0.$$

Hence, the integer shifts are not orthogonal to each other. In other words, the MRA is not orthogonal.

Does there exist a wavelet ψ with smallest possible support, say [-1/2,1]? If so, then

$$\psi(x) = a \cdot h(2x) + b \cdot h(2x - 1), \qquad a, b \in \mathbb{R}.$$

Now, $\int_{-1}^{1} h(x) \cdot \psi(x) dx = 0$; thus, a possible choice for a and b is a = -(3/5)b. (Verify this!) Choosing a = 1 gives

$$\psi(x) = h(2x) - (5/3) \cdot h(2x - 1).$$

However, ψ is neither orthogonal to its shifts nor to the nonzero shifts of h. (Show this!)

Exercise: Does there exist a wavelet ψ associated with h and supported on [-1,1] that is orthogonal to its nonzero shifts as well as the shifts of h?

Example 1.2 Cardinal B-splines.

Terminology:

- The support of a function f, supp f, is the largest closed set for which $f(x) \neq 0$.
- P_n : vector space of all real polynomials of degree at most n;
- C^n : vector space of all *m*-times continuously differentiable functions; also, let $C = C^0$.
- C^{∞} : vector space of all infinitely differentiable functions.

Definition 1.4 (Cardinal B-Splines) Let $N_1(x) := \chi_{[0,1)}$. For $m \geq 2$, define

$$N_m(x) := (N_{m-1} * N_1)(x) = \int_{-\infty}^{\infty} N_{m-1}(x-t)N_1(t)dt$$
$$= \int_0^1 N_{m-1}(x-t)dt.$$

Exercise: Calculate N_2 and N_3 !

Exercise: Show that supp $N_m = [0, m]!$ (Use induction on m!)

Exercise: Verify, at least formally, that $\lim_{m\to\infty} N_m(x) \in C^{\infty}$!

Let $V_0^m := \sigma[N_m]$, for a fixed $m \ge 1$. Then V_0^m consists of all functions $f \in C^{m-2} \cap L^2(\mathbb{R})$ whose restriction to an interval of the form $[\ell, \ell+1)$, $\ell \in \mathbb{Z}$, is a polynomial of degree at most m-1 (Verify this!). Thus, for all $k \in \mathbb{Z}$:

$$V_k^m = \{ f \in C^{m-2} \cap L^2(\mathbb{R}) \mid f|_{[\ell,\ell+1)} \in P_{m-1}, \ell \in \mathbb{Z} \}.$$
 (1.4)

Employing properties of the cardinal B-splines one shows that the collection $\{N_m(\cdot - \ell) \mid \ell \in \mathbb{Z}\}$ forms a Riesz basis of V_0^m . (cf. [7])

Example 1.3 The Hat-function revisited. (Donovan-Geronimo-Hardin-Roach)

Definition 1.5 (Finitely Generated Shift-Invariant Space) A space V is called a finitely generated shift-invariant space if there is a finite set $\phi = (\phi^1, \ldots, \phi^r)^T$ of L^2 -functions such that

$$V = \operatorname{cl}_{L^2(\mathbb{R})} \operatorname{span} \{ \phi^i(\cdot - \ell) \mid i = 1, \dots, r; \ell \in \mathbb{Z} \}.$$
 (1.5)

We write

$$\tau[\phi] := \operatorname{span}\{\phi^{i}(\cdot - \ell) \mid i = 1, \dots, r; \ell \in \mathbb{Z}\}$$
 (1.6)

and

$$\sigma[\boldsymbol{\phi}] := \operatorname{cl}_{L^2(\mathbb{R})} \tau[\boldsymbol{\phi}]. \tag{1.7}$$

Let $Df := f(\cdot/2)$. The space V is called refinable if

$$D(V) \subset V. \tag{1.8}$$

Remark: If $V = \sigma[\phi]$ then V is refinable iff

$$\phi(x) = \sum_{\ell} c_{\ell} \phi(2x - \ell), \quad c_{\ell} \in \mathbb{R}^{r \times r}.$$
 (1.9)

Let $w \in L^2(\mathbb{R})$ be supported on [0,1] and let V be the space generated by h and w:

$$V:=\sigma[h,w]$$

Introduce new generators by

$$\phi^{1} := w
\phi^{2} := (I - P_{\sigma[w]})h
= h - \frac{\langle h, w \rangle}{\langle w, w \rangle} w - \frac{\langle h, w(\cdot + 1) \rangle}{\langle w, w \rangle} w(\cdot + 1)$$

Need

$$\langle \phi^2, \phi^2(\cdot - 1) \rangle = \langle h, h(\cdot - 1) \rangle - \frac{\langle h, w \rangle \langle w, h(\cdot - 1) \rangle}{\langle w, w \rangle} = 0$$

 $\phi = (\phi^1, \phi^2)^T$ will be orthogonal iff

Let
$$q(x) := \begin{cases} x(1-x) & 0 \le x \le 1 \\ 0 & \text{otherwise} \end{cases} = x(1-x)\chi_{[0,1]} = x(1-x)^+.$$

Choose
$$w(x) := q(x) + \alpha q^2(x)$$
. Then

$$\langle h, w \rangle = \langle w, h(\cdot - 1) \rangle$$

=
$$(1/60)(5 + \alpha)$$
 (Verify this!)

$$\langle w, w \rangle = (1/630)(21 + 9\alpha + \alpha^2)$$
 (Verify this!)

Hence, Eqn. (1.10) reads:

$$\alpha^2 + 30\alpha + 105 = 0,$$

or
$$\alpha = -15 \pm 2\sqrt{30}$$
. Choose (-)-sign!

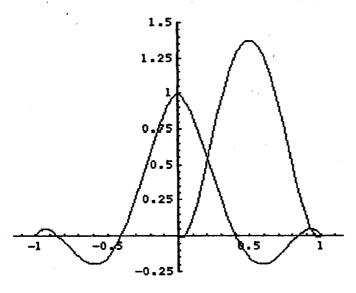


Figure 1: The orthogonal generators ϕ^1 and ϕ^2 .

Exercise: Repeat the above example with $w(x) := 4x(1-x)\chi_{[0,1]}!$

Definition 1.6 (Multiresolution Analysis of Multiplicity r) A multiresolution analysis of multiplicity r of $L^2(\mathbb{R})$ consists of a sequence of approximation spaces $\{V_k\}_{k\in\mathbb{Z}}$ with the properties:

Nestedness: For all $k \in \mathbb{Z}$, $V_k \subseteq L^2(\mathbb{R})$ and $V_k \subseteq V_{k+1}$.

Approximation Property: $\bigcup_{k\in\mathbb{Z}} V_k$ is dense in $L^2(\mathbb{R})$ and $\bigcap_{k\in\mathbb{Z}} V_k = \{0\}$.

Shift-invariance: If $f \in V_k$ then $f(\cdot - \ell) \in V_k$, for all $\ell \in \mathbb{Z}$.

Dilation-invariance: If $f \in V_k$ then $f(2) \in V_{k+1}$.

Basis: There exists a finite collection of L^2 -functions $\phi := \{\phi^i : i = 1, \ldots, r\}$, called a scaling vector or multiscaling function with the property that

1.
$$V_0 = V_0[\phi] := \text{cl}_{L^2(\mathbb{R})} \text{ span } \{\phi(\cdot - \ell) \mid \ell \in \mathbb{Z}\}.$$
 (1.11)

Finitely Generated Shift-invariant Space with generator ϕ

2. The scaling vector ϕ is required to have stable integer shifts:

$$R_1 \sum_{\ell \in \mathbb{Z}} \|C_{\ell}\|^2 \le \|\sum_{\ell \in \mathbb{Z}} C_{\ell} \phi(\cdot - \ell)\|_2^2 \le \sum_{\ell \in \mathbb{Z}} \|C_{\ell}\|^2, \tag{1.12}$$

for positive constants R_1 and R_2 and all square-summable $r \times r$ matrices $(C_\ell)_{\ell \in \mathbb{Z}}$.

Here

(The transpose of a vector or matrix is denoted by T.)

An MRA is called orthogonal iff the integer shifts of the scaling vector ϕ form an orthogonal basis of V_0 .

Definition 1.7 (Multiwavelet) A finite collection of L^2 -functions $\psi := \{\psi^i : i = 1, \ldots, r\}$ is called a multiwavelet if the two-parameter family $\{\psi_{k\ell} := 2^{k/2}\psi(2^k \cdot -\ell) : k, \ell \in \mathbb{Z}\}$ forms an orthonormal, or more generally, an unconditional basis of $L^2(\mathbb{R})$.

The nestedness of the spaces V_k implies that ϕ satisfies a two-scale matrix dilation equation or matrix refinement equation

$$\phi(x) = \sum_{\ell \in \mathbb{Z}} G_{\ell} \phi(2x - \ell).$$
 (1.14)

 $\{C_{\ell}\}_{\ell\in\mathbb{Z}} \ r\times r \ \text{matrices}, \ \text{satisfying} \ \sum_{\ell\in\mathbb{Z}} \|C_{\ell}\|^2 < \infty.$

Denote the L^2 -orthogonal complement of V_k in V_{k+1} by W_{k+1} . The existence of a multiwavelet is paramount to finding $r \times r$ matrices $(H_\ell)_{\ell \in \mathbb{Z}}$ with the properties that

$$\sum_{\ell \in \mathbb{Z}} G_{\ell} G_{\ell-2\ell'}^T = \delta_{\ell} I_{r \times r}, \qquad (1.15)$$

(orthogonality of integer shifts for ϕ)

$$\sum_{\ell \in \mathbb{Z}} H_{\ell} H_{\ell-2\ell'}^T = \delta_{\ell} I_{r \times r}, \qquad (1.16)$$

(orthogonality of integer shifts for ψ)

$$\sum_{\ell \in \mathbb{Z}} G_{\ell} H_{\ell-2\ell'}^T = O_{r \times r}, \tag{1.17}$$

(orthogonality between ϕ and ψ)

$$\sum_{\ell \in \mathbb{Z}} G_{m-2\ell}^T G_{n-2\ell'} + H_{m-2\ell}^T H_{n-2\ell'} = \delta_{mn} I_{r \times r}, \quad m, n \in \mathbb{Z},$$

$$(V_0 + W_1 = V_1)$$
(1.18)

Here $I_{r\times r}$ and $O_{r\times r}$ denotes the $r\times r$ identity, respectively, zero matrix.

Exercise: Show that the above equations for the matrices $(H_{\ell})_{\ell \in \mathbb{Z}}$ follow from the conditions given below.

•
$$\psi(x) = \sum_{\ell \in \mathbb{Z}} H_{\ell} \phi(2x - \ell);$$

•
$$\langle \phi(2^k \cdot -\ell), \phi(2^k \cdot -\ell') \rangle = 2^k \delta_{\ell\ell'} I_{r \times r},$$

•
$$\langle \psi(2^k \cdot -\ell), \psi(2^{k'} \cdot -\ell') \rangle = 2^k \delta_{kk',\ell\ell'} I_{r \times r},$$

•
$$\langle \phi(2^k \cdot -\ell), \psi(2^{k'} \cdot -\ell') \rangle = O_{r \times r}$$
.

(Here we defined $\langle \varphi_1, \varphi_2 \rangle := \int_{\mathbb{R}} \varphi_1(x) \varphi_2^T(x) dx$.)

2 Construction of Daubechies and Spline Wavelets

Objective: Construct a family of L^2 -functions ϕ and ψ with the properties:

- 1. ϕ generates an orthogonal MRA with ψ being the associated wavelet. This means that $\phi_{k\ell}$ and ψ_{mn} satisfy the orthogonality relations.
- 2. The two-parameter family $\{\psi_{k\ell} := 2^{k/2}\psi(2^k \cdot -\ell) \mid k,\ell \in \mathbb{Z}\}$ forms an orthonormal basis of $L^2(\mathbb{R})$.
- 3. $\int_{\mathbb{R}} \phi(x) dx \neq 0$. (Necessary for technical reasons.)
- 4. ϕ and ψ satisfy two-scale dilation equations of the form

$$\phi(x) = \sum_{\ell} g_{\ell} \phi(2x - \ell)$$

$$\psi(x) = \sum_{\ell} h_{\ell} \phi(2x - \ell)$$

- 5. ϕ and ψ have compact support. (This implies that the sums in the above dilation equations are *finite*.)
- 6. Vanishing moments for ψ : $\int_{\mathbb{R}} x^p \psi(x) dx = 0$, for p = 0, 1, ..., N-1, $N \geq 1$. Geometrically speaking this means that ψ is orthogonal to the space P_{N-1} of real polynomials of degree at most N-1:

$$W_k \perp P_N$$
. $k \in \mathbb{Z}$.

7. ϕ and thus ψ should have some degree of differentiability which implies that ψ will have a certain number of vanishing moments.

$$x^p = \sum_{linite} a_l \phi(x-l), \qquad p = 0, 1, \dots, N-1.$$

³Vanishing moments are related to the regularity, i.e., the degree of differentiability, of the function ψ , and thus also ϕ . The number of vanishing moments is also connected with the approximation order: If ψ has N vanishing moments, then ϕ (!) reproduces polynomials up to degree N-1, that is,

Short excursion into Fourier Theory:

Let $f \in L^2(\mathbb{R})$. The Fourier transform $\mathcal{F}(f)$ of f is defined by

$$\mathcal{F}(f)(\omega) := \int_{\mathbb{R}} e^{i\omega x} f(x) dx.$$
 (2.1)

Remarks:

- Some authors put 2π into the argument of the exponential or normalize the integral by $1/(2\pi)$ or $1/\sqrt{2\pi}$.
- For short we write \hat{f} instead of $\mathcal{F}(f)$.

Facts from Fourier Theory

- $\hat{f} \in L^2(\mathbb{R})$
- Parsival's Identity: $\langle f, g \rangle = 1/(2\pi) \langle \hat{f}, \hat{g} \rangle$, where $\langle f, g \rangle := \int_{\mathbb{R}} f(x)g(x)dx$. In particular, $||f||_2 = 1/\sqrt{2\pi}||\hat{f}||_2$.
- The Fourier transform is a one-to-one mapping of $L^2(\mathbb{R})$ onto itself whose inverse is given by

$$\boxed{\check{f}(x) := \mathcal{F}^{-1}(f)(x) = \frac{1}{2\pi} \int_{\mathbb{R}} e^{-i\omega x} \hat{f}(\omega) d\omega.}$$
 (2.2)

- If f is compactly supported then \hat{f} is not, and vice-versa. (Uncertainty Principle of Fourier Analysis: f cannot be band-limited in frequency and time.)
- Poisson Summation Formula:

$$\sum_{\ell=-\infty}^{+\infty} f(x+2\pi\ell) = \frac{1}{2\pi} \sum_{\ell=-\infty}^{+\infty} \hat{f}(\ell) e^{i\ell x}.$$
 (2.3)

(Provided both sums converge).

•
$$|\hat{f}(\omega)| \le C(1+|\omega|)^{-m}$$
 then $f \in C^{m-1}$.

One way to construct the family of Daubechies scaling functions and wavelets is via Fourier analysis.

Construct a function ϕ that generates an orthogonal MRA on $L^2({\rm I\!R})$. Note that

$$\phi(x) = \sum_{\ell} g_{\ell} \phi(2x - \ell) \tag{2.4}$$

defines an operator $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ by

$$(2.5)$$

provided that $\sum_{\ell} |g_{\ell}|^2 < \infty$. Setting $f_1 := Tf$, and applies T to f_1 one obtains a sequence $\{f_n\}_{n\geq 0}$. Idea: Define ϕ as the limit – if it exists – of this sequence:

$$[\|\phi - f_n\|_2 \to 0 \quad \text{as } n \to \infty.]$$
 (2.6)

(This ϕ is then the fixed point of T: $\phi = T\phi$.)

Take the Fourier transform of Eqn (2.4):

$$\hat{\phi}(\omega) = \left[\frac{1}{2} \sum_{\ell} g_{\ell} e^{i\ell\omega}\right] \hat{\phi}(\omega/2).$$
 (2.7)

The expression

$$\boxed{m_0(\omega) := \frac{1}{2} \sum_{\ell} g_{\ell} e^{i\ell\omega}}$$
 (2.8)

is called the two-scale symbol of ϕ .

Iterating Eqn (2.7) one obtains, at least formally

$$\hat{\phi} = \prod_{n=1}^{\infty} m_0(\omega/2^n) \hat{\phi}(0).$$
(2.9)

Suppose, w.l.o.g., that $\hat{\phi}(0) = \int_{\mathbb{R}} \phi(x) dx = 1$. If the infinite product in Eqn. (2.9) converges pointwise for all $\omega \in \mathbb{R}$ (this means that one has to impose **growth conditions** on the coefficients $\{c_\ell\}$) to the Fourier transform of a *continuous function*, then we may define ϕ by

$$\phi(x) = \mathcal{F}^{-1}\left(\prod_{n=1}^{\infty} m_0(\omega/2^n)\right). \tag{2.10}$$

Growth condition: There exists an $\eta > 0$ such that $\sum_{\ell} |g_{\ell}| |\ell|^{\eta} < \infty$.

Existence of Function: Suppose that

- $\sum_{\ell} g_{\ell-2i} g_{\ell-2j} = \delta_{ij}$; (Orthogonality to translates!)
- $\sum_{\ell} g_{\ell} = 2$; $(\hat{\phi}(0) = 1!)$

and that

$$\boxed{m_0(\omega) = \left[(1 + e^{i\omega})/2 \right]^N M(\omega), \quad N \ge 1,}$$
(2.11)

is such that

- 1. $M(\omega) = \sum_{\ell} \mu_{\ell} e^{i\omega \ell}$;
- 2. $\sum_{\ell} |\mu_{\ell}| |\ell|^{\eta} < \infty$, for some $\eta > 0$;
- 3. $\sup_{\omega \in \mathbb{R}} |M(\omega)| < 2^{N-1}$;

then the sequence of functions f_n defined by Eqn. (2.5) with $f_0 := \chi_{[0,1)}^4$ converges pointwise to a continuous function f_{∞} whose Fourier transform is given by

$$\hat{f}_{\infty} = \prod_{n=1}^{\infty} m_0(\omega/2^n).$$

Regularity: Suppose $m_0(\omega)$ factors as above in Eqn. (2.11) and that item (2) holds. If, in addition,

$$\sup_{\omega\in\mathbb{R}}|M(\omega)M(\omega/2)\cdots M(\omega/2^{n-1})|=B_n,$$

then

$$|\hat{f}_{\infty}| = |\prod_{n=1}^{\infty} m_0(\omega/2^n)| \le C(1+|\omega|)^{-N+\log B_n/(n\log 2)}.$$
 (2.12)

Let $B = \inf_{n} (B_n)$. Then

$$f_{\infty} \in \mathbb{C}^m$$
, where m is the largest integer strictly smaller than $N - B - 1$. (2.13)

⁴This is not the only f_0 that works! See, for instance, [42]

Determining the $\{g_{\ell}\}$: In terms of the symbol $m_0(\omega)$, the requirement that $\{\phi(\cdot - \ell)\}$ forms an *orthonormal* basis of $V = \sigma[\phi]$ reads

$$||m_0(\omega)|^2 + |m_0(\omega + \pi)|^2 = 1.$$
 (2.14)

Now suppose that the set of $\{g_{\ell}\}$ is finite, say $\ell = 0, 1, ..., L$. Then $m_0(\omega)$ is a trigonometric polynomial in sin and cos and, since we require some regularity, this polynomial should also satisfy Eqn. (2.11). Set $\mathcal{M}(\omega) := |m_0(\omega)|^2$ and $\mathcal{N}(\omega) := |M(\omega)|^2$. (This is also a polynomial in $\cos \omega$.)

Objective: We need to find a polynomial $\mathcal{M}(\omega)$ such that

$$\mathcal{M}(\omega) + \mathcal{M}(\omega + \pi) = 1 \tag{2.15}$$

and.

$$\mathcal{M}(\omega) = \left(\cos^2\frac{\omega}{2}\right)^N \mathcal{N}(\omega).$$

Write $\mathcal{N}(\omega)$ as a polynomial in $\sin^2 \omega/2 = (1 - \cos \omega)/2$:

$$\mathcal{N}(\omega) = P(\sin^2 \omega/2).$$

Set $x := \sin^2 \omega/2$. Then Eqn. (2.15) becomes

$$(2.16)$$

The solutions of Eqn. (2.16) determine the coefficients $\{g_{\ell}\}$!

By Bézout's Theorem there exist solutions to Eqn. (2.16).

For each $N \geq 1$, there exists an associated finite set of coefficients $\{g_{\ell}\}$. These define the Daubechies' family of scaling functions $N\phi$.

Wavelets: Let $h_{\ell} := (-1)^{\ell} g_{1-\ell}$. Then the function

$$\psi(x) := \sum_{\ell} (-1)^{\ell} g_{1-\ell} \phi(2x - \ell)$$
 (2.17)

defines an orthonormal basis for $W_1 = V_1 \ominus V_0$; thus the functions $\{\psi_{k\ell}\}_{k,\ell \in \mathbb{Z}}$ form an orthonormal basis of $L^2(\mathbb{R})$.

 $\sqrt{2}$.

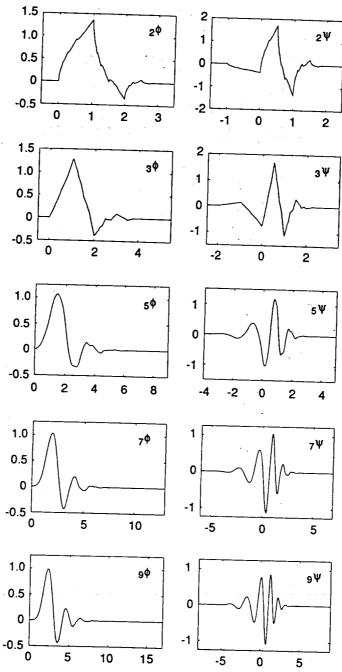


Fig. 6.3. Plots of the scaling functions $N\phi$ and wavelets $N\psi$ for the compactly supported wavelets with maximum number of vanishing moments for their support width, and with the extremal phase choice, for N=2,3,5,7, and 9.

I. Daubechies: "Ten Lectures on Wavelets" SIAM CBMS Vol. 61, 1992.

Properties of the Daubechies' Wavelets:

- $\phi(x) = \sum_{\ell=0}^{2N-1} g_{\ell}\phi(2x-\ell), g_0 \neq 0 \neq g_{2N-1}$, implies that $\operatorname{supp}\phi = [0, 2N-1]$.
- The higher the regularity the larger the support.
- If $\psi \in C^m$ and $\psi^{(m)}$ is bounded, then ψ has m+1 vanishing moments:

$$\int_{\mathbb{R}} x^p \psi(x) dx = 0, \qquad p = 0, 1, \dots, m$$
 (2.18)

and ϕ reproduces polynomials of degree at most m:

$$x^p = \sum_{\ell} a_{\ell} \phi(x - \ell)$$
, for some real coefficients a_{ℓ} . (2.19)

- Good localization in time and frequency domain.
- Only the Haar scaling function and wavelet are symmetric.
- (Unmodified) Daubechies scaling functions and wavelets show boundary effects when restricted to subsets of the real line, e.g. finite or semi-infinite intervals.
- Daubechies scaling functions and wavelets are not interpolatory.
- The Daubechies wavelet $_2\psi$ is an affine fractal function 6 of the type considered later in these lectures.
- The Haar scaling function and associated wavelet are included in the Daubechies family if N = 1.
- There are so-called generalized functions or distributions which satisfy two-scale dilation equations but are not included in the Daubechies family. One such example is the Dirac δ "function". It satisfies the dilation equation

$$\delta(x) = 2\delta(2x).$$

⁵Given a finite set of interpolation points $\{(x_j, y_j) \mid j = 0, 1, ..., J\}$, there exists a finite set of constants $\{c(k\ell)\}$ such that $y_j = \sum_{\ell} c(k\ell) \phi(2^k x_j - \ell)$, for all j = 0, 1, ..., J.

⁶An affine fractal function is a function whose graph is made up of a finite number of affine images of itself. The graph of such a function has, in general, non-integral dimension.

Cardinal Spline Wavelets (cf. [7])

The *mth* order fundamental cardinal spline L_m has the interpolation property with respect to the data $\{(i, \delta_i)\}_{i \in \mathbb{Z}}$, i.e.,

$$L_m(i) = \delta_i := \begin{cases} 1 & \text{if } i = 0, \\ 0 & \text{otherwise} \end{cases}$$
 (2.20)

It is known that L_m can be written in the form

$$L_m(x) = \sum_{\ell \in \mathbb{Z}} c_{m,\ell} N_m \left(x + \frac{m}{2} - \ell \right), \qquad (2.21)$$

for some bi-infinite sequence of real coefficients $\{c_{m,\ell}\}$. (This bi-infinite sequence is determined by solving $L_m(i) = \delta_i$.) Note that L_m is not compactly supported!

Theorem 2.1 (Cardinal Spline Wavelets) Let $m \in \mathbb{N}$ be fixed and let $W_{k+1}^m := V_{k+1}^m \ominus V_k^m$ (cf. Eqn (1.4)). Define

$$\psi^{m}(x) := L_{2m}^{(m)}(2x - 1), \qquad m \in \mathbb{N}.$$
 (2.22)

Then the wavelet spaces $\{W_k^m\}_{k\in\mathbb{Z}}$ are generated by the $\{\psi_{k\ell}^m\}$:

$$W_k^m = \sigma[\psi^m(2^k \cdot)]. \tag{2.23}$$

Note that since L_{2m} is not compactly supported, the wavelets ψ^m are not orthogonal to their translates.

Theorem 2.2 (Compactly Supported Spline Wavelets) Let $m \in \mathbb{N}$ be fixed. The functions

$$\psi^{m}(x) := \sum_{\ell=0}^{3m-2} \left[\frac{(-1)^{n}}{2^{m-1}} \sum_{n=0}^{\ell} {m \choose n} N_{2m}(\ell+1-n) \right] N_{2m}(2x-\ell), \qquad (2.24)$$

form a Riesz basis of W_0^m . Moreover, $supp \psi^m = [0, 2m-1]$.

3 Brief Introduction to Fractal Functions

Let $\{(x_j := j/2, y_j) \mid j = 0, 1, 2\}$ be a given set of interpolation points. Let f_1 be the unique linear function satisfying

$$f_1(j/2) = y_j$$
 $j = 0, 1, 2.$

Denote by S_k^1 the vector space of all linear splines with *knots* at $\{j/2^k \mid j = 0, 1, \ldots, 2^k\}$.

Note that $S_k^1 \subseteq S_{k+1}^1$, $k \in \mathbb{N}$.

Define an operator $T: S_1^1 \to S_2^1$ by

$$(Tf_1)(x) = \begin{cases} \lambda_0(2x) + s_0 f_1(2x), & 0 \le x \le 1/2 \\ \lambda_1(2x-1) + s_1 f_1(2x-1), & 1/2 < x \le 1 \end{cases}$$
(3.1)

where λ_{ℓ} , $\ell = 0, 1$, is the unique affine function such that

$$(Tf_1)(0) = f_1(0), \quad (Tf_1)(1) = f_1(1), \quad (Tf_1)(1/2-) = (Tf_1)(1/2+) = f_1(1/2).$$
(Join-up Conditions)

The s_{ℓ} , $\ell = 0, 1$, are free parameters. Note that Tf_1 is a linear spline with knots $\{0, 1/4, 1/2, 3/4, 1\}$.

The iterates of B applied to f_1 generates linear splines with increasing knot sets:

$$f_{k+1} := T^k f_1 = T(T^k f_1) \in S_{k+1}^1, \qquad k \in \mathbb{N}.$$
 (3.2)

Exercise: Calculate f_2 explicitly for $y_0 = 0$, $y_1 = 1$, and $y_2 = 0.5$!

Convergence of f_k as $k \to \infty$: If $\max\{|s_0, s_1\} < 1$ then f_k converges to a continuous function f as $k \to \infty$: Let g and g be two linear splines in S_k^1 .

$$|(Tg)(x) - (Th)(x)| \le \max\{s_0, s_1\}|f(2x - \ell) - g(2x - \ell)|$$
 $< \max\{s_0, s_1\}\sup\{|f(x) - g(x)| \mid 0 \le x \le 1\}.$

Setting $||f||_{\infty} := \sup\{|f(x)| \mid 0 \le x \le 1\}$, one has

$$||Tg - Th||_{\infty} \le \max\{s_0, s_1\} ||f - g||_{\infty}.$$
 (3.3)

Thus, if $\max\{s_0, s_1\} < 1$ the operator T is a contraction on the linear space of continuous functions defined on [0,1]. By the Banach Fixed Point Theorem, T has a unique fixed point f. Moreover, f is the limit (in the $\|\cdot\|_{\infty}$ -norm) of the sequence f_k as $k \to \infty$.

Definition 3.1 (Affine Fractal (Interpolation) Function) The unique fixed point of the operator T defined in Eqn. (3.1) is called an affine fractal (interpolation) function. (cf. [3, 30])

Self-referential structure of a fractal function: Let f be the affine fractal function generated by T.

$$Tf = f \iff f(x) = \Lambda(x) + \sum_{\ell=0}^{1} s_{\ell} f(2x - \ell).$$
 (3.4)

Here

$$\Lambda(x) := \begin{cases} \lambda_0(2x), & 0 \le x \le 1/2 \\ \lambda_1(2x-1), & 1/2 < x \le 1. \\ 0, & \text{otherwise} \end{cases}$$

and f was set to be identically zero outside [0,1].

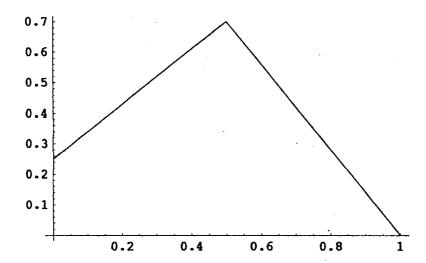
Eqn. (3.4) expresses the fact that the graph G_f of f is made up of two affine images of itself, each of which is made up of two affine images of itself, each of which is ... ad infinitum!

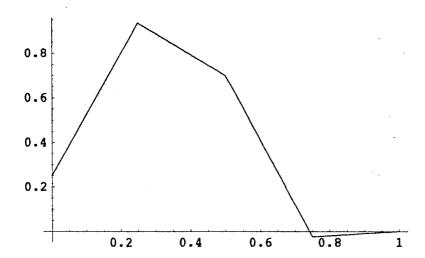
Exercise: Show that $G_f = w_0(G_f) \cup w_1(G_f)$, where $w_{\ell}(x,y) := ((x - \ell)/2, \lambda_{\ell}(2x - \ell) + s_{\ell}y), \ell = 0, 1!$

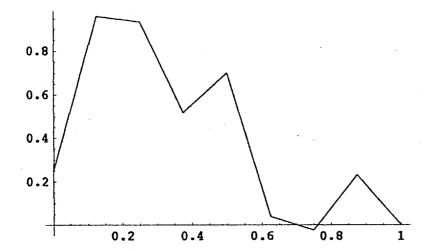
Note that $f(j/2) = y_j$, j = 0, 1, 2, and, moreover, $f(j/2^k) = f_k(j/2^k)$, $j = 0, 1, \ldots, 2^k$, $k \in \mathbb{N}$. In other words, each space S_k^1 is properly contained in the space \mathcal{F}^1 of all affine fractal functions on [0, 1]: Formally

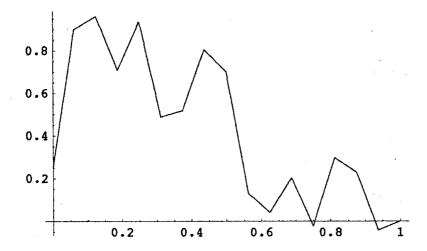
$$S_k^1 \stackrel{k \to \infty}{\longrightarrow} \mathcal{F}^1$$

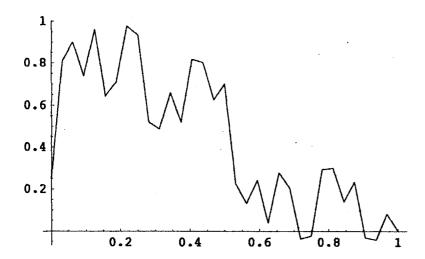
Banach Fixed Point Theorem/Contraction Mapping Theorem: Let $(X, \|\cdot\|)$ be a complete normed linear space and let T be a contraction on X, i.e., $\|Tx-Ty\| \le C\|x-y\|$, 0 < C < 1, then T has a unique fixed point x^* in X. Furthermore, if x_1 is any point in X, the sequence $\{T^kx_1\}$ converges to x^* .

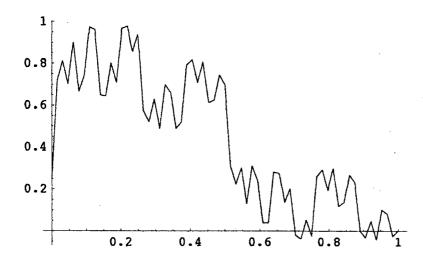


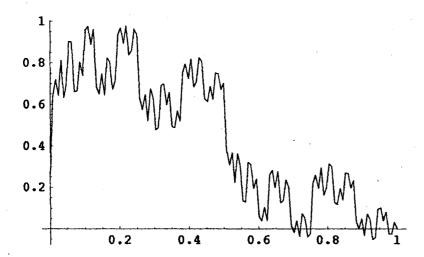


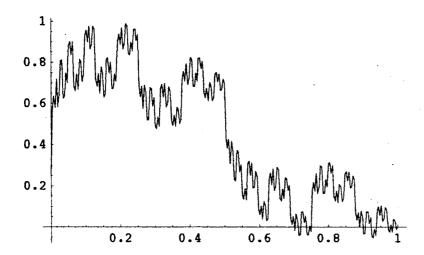


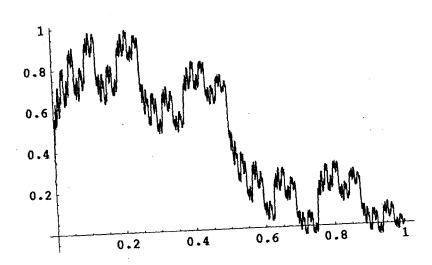












Piecewise fractal functions

Observations:

• The interpolation values $\mathbf{y} := \{y_j \mid j = 0, 1, 2\}$, uniquely determine the affine functions $\lambda := \{\lambda_\ell \mid \ell = 0, 1\}$, which uniquely determine the affine fractal function $f = f_{(\mathbf{y};\mathbf{s})}$ for a given set of $\mathbf{s} := \{s_\ell \mid \ell = 0, 1\}$:

$$y \mapsto \lambda \mapsto f_{(y;s)}$$

Thus, the mapping $\mathbf{y} \mapsto f(\mathbf{y};\mathbf{s})$ is a linear isomorphism.

- Eqn. (3.4) is an inhomogeneous two-scale dilation equation.
- The affine fractal function $f(\cdot/2)$ restricted to the interval [0, 1/2), respectively, [1/2, 1] is an affine fractal function on its own right generated by affine mappings $\lambda_{00} = \lambda_0$, $\lambda_{01} = \lambda_0(\cdot -1) + s_1\lambda_1 s_0\lambda_0$ on [0, 1/2), respectively by $\lambda_{10} = \lambda_1 + s_0\lambda_0 s_1\lambda_1$ and $\lambda_{11} = \lambda_1(\cdot -1)$ on [1/2, 1].

As $f = f_{(\boldsymbol{y};\boldsymbol{s})}$ is uniquely determined by \boldsymbol{y} , there exists a canonical basis for \mathcal{F}^1 : Fix a set of parameters $\{s_{\ell} \mid \ell = 0,1\}$ and let $\boldsymbol{y}_0 := \{1,0,0\}$, $\boldsymbol{y}_1 := \{0,1,0\}$, and $\boldsymbol{y}_2 := \{0,0,1\}$. Let $\boldsymbol{\epsilon}_j$ be the unique affine fractal function generated by the interpolation values \boldsymbol{y}_j , j = 0,1,2. If $\boldsymbol{y} = \{y_j \mid j = 0,1,2\}$ is any set of interpolation values and $f = f_{\boldsymbol{y}}$ the uniquely determined fractal function, then

$$f_{\mathbf{y}} = \sum_{j=0}^{2} y_j \, \epsilon_j. \tag{3.5}$$

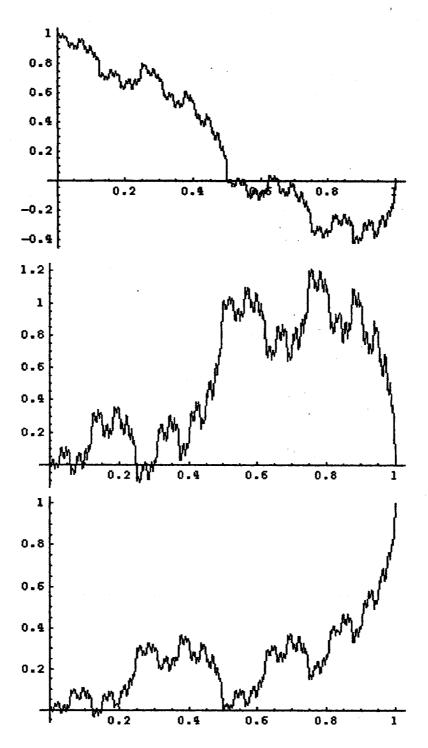


Figure 2: The canonical basis ϵ_j .

Definition 3.2 (Piecewise Fractal Function) On each interval of the form $[\ell, \ell+1)$ construct a fractal function f_{ℓ} , $\ell \in \mathbb{Z}$. Then the function

$$f = \sum_{\ell=-\infty}^{+\infty} f_{\ell} \chi_{[\ell,\ell+1)}$$
 (3.6)

is called a piecewise fractal function.

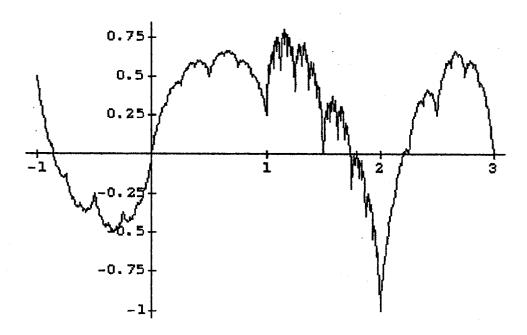


Figure 3: A piecewise fractal function

Finitely generated shift-invariant and refinable spaces may be constructed using these piecewise fractal functions: For instance, is shown shortly that the space

$$V_0 := \{g : \mathbb{R} \to \mathbb{R} \mid g|_{[\ell,\ell+1)} = f_{\ell}, \ell \in \mathbb{Z}\} \cap L^2(\mathbb{R})$$
(3.7)

is spanned by two orthogonal generators. Moreover, the refinable spaces $\{V_k\}_{k\in\mathbb{Z}}$ form an orthogonal MRA of $L^2(\mathbb{R})$.

4 Construction of the DGHM Multiwavelet

(Presentation given here is due to Donovan, Geronimo, and Hardin)

Recall Eqn. (1.10). Start again with the hat function $h(x) = (1 - |x|)^+$. Introduce a new and yet unknown continuous function w with suppw = [0, 1], and define $V_0 := \sigma[h, w]$.

Idea: Find a function u such that

- u is supported on [-1,1];
- u is a linear combination of h, w, and $w(\cdot + 1)$;
- u is orthogonal to its translates $u(\cdot \pm 1)$ and to w;
- $V_0 = \sigma[u, w]$.

Define

$$u(x) := (I - P_{\sigma[w]})h$$

$$= h - \frac{\langle h, w \rangle}{\langle w, w \rangle} w - \frac{\langle h, w(\cdot + 1) \rangle}{\langle w, w \rangle} w(\cdot + 1).$$

Note that w is already orthogonal to its integer shifts. Need

$$\langle u, u \cdot -1 \rangle = 0.$$

This is equivalent to

$$\overline{\langle h, h(\cdot - 1) \rangle = \frac{\langle u, w \rangle \langle u(\cdot - 1), w \rangle}{\langle w, w \rangle}}.$$
 (4.1)

Refinability implies that $w(\cdot/2) \in V_0$; i.e., $w(\cdot/2)$ must be a linear combination of $h(\cdot-1)$, w, and $w(\cdot-1)$:

$$w(x/2) = h(x-1) + s_0 w(x) + s_1 w(x-1).$$
(4.2)

But Eqn. (4.2) is recognized as an inhomogenous two-scale dilation equation of the form (3.4)! Thus, if $\max\{|s_0|,|s_1|\} < 1$, the solution of Eqn. (4.2) is an affine fractal function. (Note that $\lambda_0(x) = x$ and $\lambda_1(x) = 1 - x$.)

Employing the fixed point equation (3.4), one can derive explicit formulas for the inner products of fractal functions.

Exercise: Suppose that f and g are two affine fractal functions generated by affine map λ_{ℓ} , respectively, μ_{ℓ} , $\ell = 0,1$. Use Eqn. (3.4) to derive an explicit formula for the inner product $\langle f,g \rangle$!

Choosing $s_0 = s_1 =: s$ causes w to be symmetric about the line x = 1/2. (Verify this!). In this case, one obtains

$$\langle w, 1 \rangle = \frac{1}{2(1-s)}$$

$$\langle h, w \rangle = \langle h, w(\cdot + 1) \rangle = \frac{1}{4(1-s)}$$

$$\langle w, w \rangle = \frac{2+s}{6(1-s)^2(1+s)}$$

$$\langle h, h(\cdot -1) \rangle = \frac{1}{6}.$$

The orthogonality condition (4.1) then gives

$$s = -1/5$$

Normalizing u and w yields:

$$\phi^1(x) := \frac{w}{\sqrt{\langle w, w \rangle}}$$

$$\phi^2(x) := \frac{u}{\sqrt{\langle u, u \rangle}}.$$

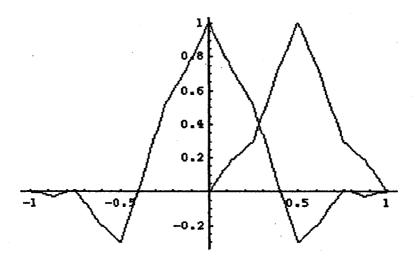


Figure 4: The orthogonal generators ϕ^1 and ϕ^2 .

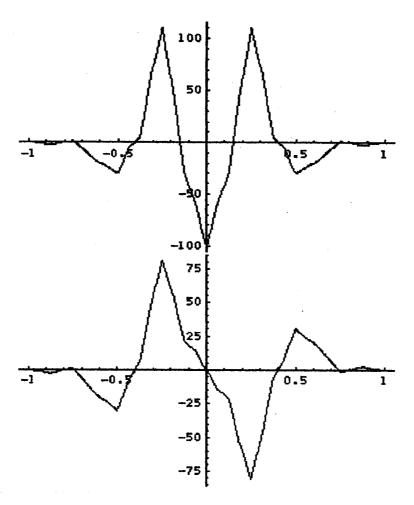


Figure 5: The orthogonal multiwavelet ψ^1 and ψ^2 .

Properties of the DGHM scaling vector:

- ϕ^2 is made up of two affine fractal functions; one with support [-1,0] the other with support [0,1].
- Since |s| = 1/5 < 1/2, the orthogonal generators are elements of the function space Lip¹, ⁸ and thus possess a first derivative almost everywhere. This first derivative is an element of $L^2(\mathbb{R})$.
- Since the hat function is a linear combination of ϕ^1 and ϕ^2 (Show this!), the scaling vector $\phi := (\phi^1 \phi^2)^T$ has the same approximation order as the hat function:

$$x^p = \sum_{\ell} c_{\ell}^T \phi(x - \ell), \qquad p = 0, 1.$$

- The dilates and translates $\phi_{k\ell}$ remain orthogonal when restricted to compact intervals. (This is very important when (multi) wavelets are employed to solve boundary value problems.)
- \bullet ϕ can handle non-uniform geometries such as irregular grid spacings.
- The scaling vector ϕ has smaller support and higher regularity than the corresponding Daubechies scaling function with the same approximation order, namely, $_2\phi$.
- Symmetry/antisymmetry
- ϕ is interpolatory (since ϕ^1 and ϕ^2 are fractal interpolation functions).

$$|f(x) - f(x')| < C|x - x'|$$
 for all $x, x' \in \mathbb{R}$.

⁸A function f is said to belong to the function space Lip^1 if there exists a positive constant C such that

Calculation of Matrix Coefficients for the Scaling Vector:

Analytically

Matrix Refinement Equation:

$$\left[\begin{pmatrix} \phi^{1}(x) \\ \phi^{2}(x) \end{pmatrix} = \sqrt{2} \sum_{\ell=-2}^{1} G_{\ell} \begin{pmatrix} \phi^{1}(2x-\ell) \\ \phi^{2}(2x-\ell) \end{pmatrix}. \right]$$
(4.3)

The values of $\phi = (\phi^1 \phi^2)^T$ at $x_j = j/2^2$, $j = 1, ..., 2^3$, are known. (Fixed Point Equation for fractal functions!) Thus, the entries in the matrices G_{ℓ} , $\ell = -2, ..., 1$, can be computed from Eqn. (4.3).

$$G_{-2} = \begin{pmatrix} 3\sqrt{2}/10 & 4/5 \\ -1/20 & -3\sqrt{2}/20 \end{pmatrix}, G_{-1} = \begin{pmatrix} 3\sqrt{2}/10 & 0 \\ 9/20 & 1/\sqrt{2} \end{pmatrix}$$

$$G_{0} = \begin{pmatrix} 0 & 0 \\ 9/29 & -3\sqrt{2}/20 \end{pmatrix}, G_{1} = \begin{pmatrix} 0 & 0 \\ -1/20 & 0 \end{pmatrix}$$

Geometrically (Donovan-Geronimo-Hardin)

- $\alpha := (abc)^T$, $\beta := (cba)^T$, and $\gamma := (def)^T$;
- $\langle \phi^2, \phi^2 \rangle = ||\alpha||^2 + (1/\sqrt{2})^2 + ||\beta||^2 = 1;$
- $\|\alpha\|^2 = \|\beta\|^2$ and $e = \phi^1(1/2)$;
- $\langle \phi^i(\cdot \ell), \phi^j \rangle = \delta_{ij} \delta_{\ell}$. This is equivalent to saying that $\{\alpha, \beta, \gamma\}$ is an orthonormal basis of \mathbb{R}^3 .

Calculation of the Multiwavelet

Analytically

Solve Eqns. (1)- (1.18)

$$H_{-2} = \begin{pmatrix} \sqrt{3}/20 & 3\sqrt{6}/20 \\ 0 & 0 \end{pmatrix}, \quad H_{-1} = \begin{pmatrix} -9\sqrt{3}/20 & 1/\sqrt{6} \\ 0 & -1/\sqrt{3} \end{pmatrix}$$

$$H_{0} = \begin{pmatrix} 3\sqrt{3}/20 & -\sqrt{6}/20 \\ 3\sqrt{6}/10 & -\sqrt{3}5 \end{pmatrix}, \quad H_{1} = \begin{pmatrix} -\sqrt{3}/60 & 0 \\ -\sqrt{6}/30 & 0 \end{pmatrix}$$

Geometrically (Donovan-Geronimo-Hardin)

- Look for two wavelets supported on [-1,1];
- Let $\boldsymbol{\delta} := (a'b'c')^T$ and $\boldsymbol{\varepsilon} := (d'e'f')^T$;
- $\langle \psi, \phi^1 \rangle = \langle \psi, \phi^2(\cdot 1) \rangle = 0$ implies $\varepsilon \bullet \gamma = \varepsilon \bullet \alpha = 0$. $\Longrightarrow \varepsilon$ multiple of β . Similarly, δ multiple of α .
- $\psi^1: (\boldsymbol{\alpha})(h)(\boldsymbol{\beta})$ (symmetry);
- $\psi^2: (-\alpha)(0)(\beta)$ (antisymmetry);
- $\langle \psi^1, \phi^2 \rangle \Longrightarrow h = -1/\sqrt{2};$

More on Scaling Vectors and Multiwavelets

Intertwining MRAs

Let ϕ be a finite collection of compactly supported L^2 -functions generating an MRA:

$$V_k := \sigma[\phi(2^k \cdot)] \qquad k \in \mathbb{Z}.$$

Theorem 4.1 (Donovan-Geronimo-Hardin) There exists a pair of integers (k,m) and some orthogonal MRA $\{\tilde{V}_m\}_{m\in\mathbb{Z}}$ such that

$$V_k \subset \tilde{V}_0 \subset V_{k+m}. \tag{4.4}$$

 $\{V_k\}$ and $\{\tilde{V}_m\}$ are called intertwining MRAs.

Intertwining MRAs may be used to construct an orthogonal MRA from a nonorthogonal. The basic idea is to use some of the generators from V_{k+m} to modify the generators of \widetilde{V}_0 .

Example 4.1 Piecewise Quadratic Orthonormal Scaling Vector (cf. [38])

Let $h = (1 - |x|)^+$ be the hat function, let $q(x) := (4x - 4x^2)^+$, and let $V_0 := \sigma[h, q]$. It follows from approximation-theoretic considerations that the refinable space V_0 has approximation order three, i.e., every polynomial of degree at most two can be written as a linear combination of the translates of h and q. Clearly, h and q are not orthogonal generators.

Objective: Find an orthonormal refinable subspace \tilde{V}_0 of V_0 such that

$$V_0 \supset \tilde{V}_0 \supset V_1 \supset \tilde{V}_1$$
.

For this purpose, let

$$h_1(x) := (I - P_{\sigma[q]})h(x)$$

$$= h(x) - \frac{\langle q, h \rangle}{\langle q, q \rangle} q(x) - \frac{\langle q(\cdot + 1), h \rangle}{\langle q, q \rangle} q(x + 1).$$

Note: $q \perp h_1$.

However, $\langle h_1, h_1(\cdot - 1) \rangle \neq 0$.

Now choose a function h_2 with support [0,1] from V_1 . Note that functions from V_1 restricted to [0,1] form a three dimensional space $\sigma[h(2\cdot -1), q(2\cdot), q(2\cdot -1)]$.

$$h_3(x) := (I - P_{\sigma[h_2]})h_1(x).$$

Need:

- $\langle h_2, q \rangle = 0 \Longrightarrow h_2 \in q^{\perp} \cap V_1$.
- $\bullet \langle h_3, h_3(\cdot 1) \rangle = 0.$

The first requirement is easily satisfied: As $q^{\perp} \cap V_1$ is two dimensional let

$$p_1(x) := q(2x) - q(2x-1)$$
, antisymmetric about $x = 1/2$!

$$p_2(x) := q(2x) + q(2x-1) - \frac{28}{25}h(2x-1).$$

Thus,

$$h_2(x) = s_1 p_1(x) + s_2 p_2(x).$$

Now

$$\langle h_3, h_3(\cdot - 1) \rangle = \langle h_1, h_1(\cdot - 1) \rangle - \frac{\langle h_1, h_2 \rangle \langle h_1(\cdot - 1), h_2 \rangle}{\langle h_2, h_2 \rangle}.$$
 (Show this!). (4.5)

Thus,

The unknowns s_1 and s_2 are now determined by Eqn. (4.5):

$$125s_1^2 - 256s_2^2 = 0 (4.7)$$

Normalization yields:

$$\phi^{1}(x) := \frac{q(x)}{\|q\|}$$

$$\phi^{2}(x) := \frac{h_{2}(x)}{\|h_{2}\|}$$

$$\phi^{3}(x) := \frac{h_{3}(x)}{\|h_{3}\|}$$

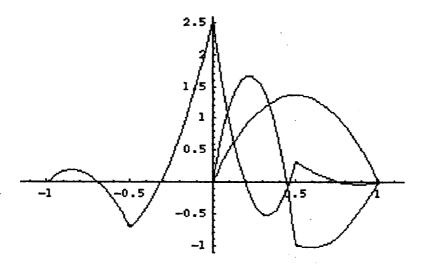


Figure 6: The orthonormal generators ϕ^1 , ϕ^2 , and ϕ^3 .

Support Properties of Scaling Vectors

Recall that if ϕ is a scaling function whose refinement equation is

$$\phi(x) = \sum_{\ell=0}^{L} g_{\ell}\phi(2x-\ell), \quad g_0g_L \neq 0,$$

then $\operatorname{supp} \phi = [0, L]$.

The situation is not as simple for scaling vectors.

Theorem 4.2 Suppose the scaling vector ϕ satisfies

$$\phi(x) = \sum_{\ell=0}^{L} G_{\ell} \phi(2x - \ell)$$

with $G_0, G_L \neq O \in \mathbb{R}^{r \times r}$. If

- 1. If G_0 is nilpotent ⁹ then $supp \phi \subseteq [1/(2^r 1), L];$
- 2. If G_L is nilpotent then $\operatorname{supp} \phi \subseteq [0, L 1/(2^r 1)];$
- 3. If neither G_0 nor G_L is nilpotent then $supp \phi = [0, L]$.

Remark: Tighter bounds can be obtained by considering the individual entries in the matrices G_{ℓ} . (cf. [39]).

⁹A matrix M is called nilpotent if some positive integer power of M is the zero matrix: there exists an $n \in \mathbb{N}$ such that $M^n = O$.

5 Applications

Decomposition and Reconstruction Algorithm

Since $V_{k+1} = V_k \oplus W_{k+1}$, every $f_{k+1} \in V_{k+1}$ can be decomposed into an "averaged" or "blurred" component $f_k \in V_k$ and a "difference" or "fine-structure" component $g_{k+1} \in W_{k+1}$:

$$f_{k+1} = f_k + g_{k+1}.$$

This decomposition can be continued until f_{k+1} is decomposed into a coarsest component f_0 and k difference components g_m , $m = 1, \ldots, k+1$:

$$f_{k+1} = f_0 + g_1 + \ldots + g_k + g_{k+1}.$$
 (5.1)

This decomposition algorithm can be reversed to give a reconstruction algorithm: Given the coarse components together with the fine structure components one reconstructs any $f_k \in V_k$ via reversal of Eqn. (5.1).

Both algorithms are usually applied to the expansion coefficients (in terms of the underlying basis) of f and g and they involve the matrices G_{ℓ} and H_{ℓ} .

More precisely, the decomposition algorithm gives

$$V_k \ni f_k = \sum_{\ell} \boldsymbol{\alpha}_{k\ell}^T \boldsymbol{\phi}(2^k \cdot -\ell) = \sum_{\ell} \boldsymbol{\alpha}_{k-1,\ell}^T \boldsymbol{\phi}(2^{k-1} \cdot -\ell) + \sum_{\ell} \boldsymbol{\beta}_{k-1,\ell}^T \boldsymbol{\psi}(2^{k-1} \cdot -\ell),$$

where the vector coefficients $\alpha_{k\ell}$, $\alpha_{k-1,\ell}$, and $\beta_{k-1,\ell}$ are related via

$$\boxed{\boldsymbol{\alpha}_{k-1,\ell} = \sum_{\ell'} C_{\ell'-2\ell} \, \boldsymbol{\alpha}_{k\ell} \quad \text{and} \quad \boldsymbol{\beta}_{k-1,\ell} = \sum_{\ell'} D_{\ell'-2\ell} \, \boldsymbol{\alpha}_{k\ell}.}$$
(5.2)

This last equation defines an operator $\mathcal{D}_k: \ell^2(\mathbb{R}^r): \to \ell^2(\mathbb{R}^r) \times \ell^2(\mathbb{R}^r)$ via

$$\mathcal{D}_{k}(\boldsymbol{\alpha}_{k\ell}) = (\boldsymbol{\alpha}_{k-1,\ell}, \boldsymbol{\beta}_{k-1,\ell}), \quad k \in \mathbb{Z},$$
(5.3)

where the right-hand side is given by Eqn. (5.2).

Note that α_{k-1} and β_{k-1} are sampled only at the even integers (down-sampling by 2: $\downarrow 2$).

Figure 7: The decomposition algorithm

$$\begin{vmatrix}
\alpha_0 & \longrightarrow & \alpha_1 & \longrightarrow & \cdots & \longrightarrow & \alpha_{N-1} & \longrightarrow & \alpha_N \\
\nearrow & \nearrow & \nearrow & \nearrow & \nearrow & \nearrow & & & \\
\beta_1 & \beta_2 & \cdots & \beta_{N-1} & \beta_N & & & & \\
\end{vmatrix} (5.7)$$

Figure 8: The reconstruction algorithm

The reconstruction algorithm is obtained as follows: If $V_{k-1} \ni f_{k-1} = \sum_{\ell} \alpha_{k-1,\ell}^T \phi(2^{k-1} \cdot -\ell)$ and $W_k \ni g_k = \sum_{\ell} \beta_{k-1,\ell}^T \psi(2^{k-1} \cdot -\ell)$, then

$$\alpha_{k\ell} = \sum_{\ell'} C_{\ell'-2\ell} \alpha_{k-1,\ell} + D_{\ell'-2\ell} \beta_{k-1,\ell'}$$
(5.4)

Again, this last equation implies the existence of an operator $\mathcal{R}_{k-1}: \ell^2(\mathbb{R}^r) \times \ell^2(\mathbb{R}^r) \to \ell^2(\mathbb{R}^r)$ given by

$$\mathcal{R}_{k-1}(\boldsymbol{\alpha}_{k-1,\ell},\boldsymbol{\beta}_{k-1,\ell}) = \boldsymbol{\alpha}_{k\ell}, \qquad k \in \mathbb{Z},$$
(5.5)

with the right-hand side given by Eqn. (5.4).

Note that only the *even* indices are used to obtain α_k . Zeros are used for the odd indices (interlacing of zeros or upsampling by 2: \uparrow 2).

Compression

The finiteness of the decomposition and reconstruction algorithm suggests the following compression schemes, also called quantization.

Suppose $\alpha_N \in V_N$ has been decomposed into

$$\alpha_N \to (\alpha_0 \beta_1 \cdots \beta_N)$$

Choose a threshold $\tau_n > 0$, for each level n = 1, ..., N.

FOR
$$(n = 1 \text{ to } n = N)$$
 DO

IF $\|\beta_n\| < \tau_n$

set $\|\beta_n\| = 0$

ELSE retain

This creates a new sequence $(\tilde{\boldsymbol{\beta}}_N \, \tilde{\boldsymbol{\beta}}_{N-1} \, \cdots \, \tilde{\boldsymbol{\beta}}_1)$.

Reconstruction:

Compression: $\|\boldsymbol{\alpha}_N - \tilde{\boldsymbol{\alpha}}_N\|_2 < \tau$

Compression ratio:

$$\frac{\#\alpha}{\#\tilde{\alpha}}$$

Signal Processing

G: low-pass filter

H: high-pass filter

Signal: discretly sampled function $\{f(n) \mid n \in \mathbb{Z}\}$. Usually $f \in L^2(\mathbb{R})$ (finite energy); thus, $\{f(n)\} \in \ell^2(\mathbb{R})$.

Polyphase form: $\mathbf{f} \in \ell^2(\mathbb{R})^r$, $r \geq 1$.

$$f(n) := \begin{pmatrix} f(rn) \\ f(rn+1) \\ f(rn+2) \\ \vdots \\ f(rn+r-1) \end{pmatrix} \in \mathbb{R}^r.$$
 (5.11)

Associate with f a sequence y via some linear, continuous, invertible, and time-invariant operator $\Theta: \ell^2(\mathbb{R})^r \to \ell^2(\mathbb{R})^r$:

$$\mathbf{y} := \Theta \mathbf{f}. \tag{5.12}$$

It is well-known that an operator such as Θ is a convolution operator (cf. [21]). I.e., there exists a bi-infinite matrix q = (q(n)), q(n) an $r \times r$ matrix, such that

$$y = \Theta f = q * f. \tag{5.13}$$

q or its z-transform $Q(z) := \sum_n q(n)z^n$ is called a prefilter for Θ .

If r = 1, the identity is commonly used for Θ .

Conditions on Prefilters:

- Orthogonality: q preserves the energy of the signal.
- Preserving approximation order: if f is a polynomial signal then q * f are also samples of a polynomial (of the same degree).

Without prefiltering, constant signals may become non-constant.

Compression schemes applied to signals

- Good reconstruction;
- Denoising (uses statistical methods). Cf. [19, 20];

Data and Image Compression

Image: Sequence of gray-scales ranging from 0 (black) to 255 (white).

 $M \times N$ grayscale image \longrightarrow sequence of length MN (unfolding of columns/rows).

Data/Image compression: Represent the same image by a sequence y of length (considerably) less than MN.

Lossy compression: information/data is discarded, cannot be recovered.

Apply the compression scheme (5.8) to "Lena" using the DGHM multiwavelet and compare to the Daubechies $D4 = 2\phi$ and JPEG.

Pictures and information taken from [38].

page 45 after page 61

Lena 512x512 CompRatio 17:1 PSNR 34.98 MWAV DGHM

Lena512x512CompRatio17:1PSNR34.45WAVJPEG

Figure 16: Orthogonal Prefiltered DGHM vs JPEG: Compression Ratio 17:1

Lena512x512CompRatio33:1PSNR31.83MWAVDGHM

 Lena
 512x512

 CompRatio
 33:1

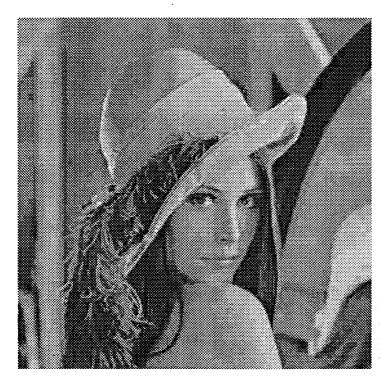
 PSNR
 30.5226

 WAV
 JPEG

Figure 17: Orthogonal Prefiltered DGHM vs JPEG: Compression Ratio 33:1

Lena CompRatio PSNR MWAV

512x512 39:1 30.53 DGHM



Lena512x512CompRatio39:1PSNR28.97WAVJPEG

Figure 18: Orthogonal Prefiltered DGHM vs JPEG: Compression Ratio 39:1

Lena512x512CompRatio60:1PSNR29.29MWAVDGHM

Lena512x512CompRatio60:1PSNR24.4333WAVJPEG

Figure 19: Orthogonal Prefiltered DGHM vs JPEG: Compression Ratio 60:1

Differential Equations

$$-u'' + u = f,$$
 $u(0) = u(1) = 0.$ (5.14)

Classical Solution: $u \in C^2$ and $f \in C$.

Requirements are too strong for some realistic problems such as shock waves, turbulence, etc.

Weak Solution: Let $v \in C^1$.

$$-\int_{0}^{1} u^{n}v dx + \int_{0}^{1} uv dx = \int_{0}^{1} fv dx$$

Integration by parts together with boundary conditions yields:

$$\int_0^1 u' \, v' dx + \int_0^1 uv dx = \int_0^1 fv dx, \tag{5.15}$$

or, equivalently,

$$\overline{\langle u', v' \rangle + \langle u \rangle v = \langle f, v \rangle}.$$
(5.16)

Requirements now are: $u \in H_0^1[0,1]$ and $f \in H^{-1}$

$$H_0^1[0,1] = \{ f \mid f' \in L^2(\mathbb{R}); f(0) = f(1) = 0 \}.$$

$$H^{-1} = \{ \text{all linear functionals } \varphi : H_0^1 \to \mathbb{R} \}.$$

Galerkin Method: Approximate weak infinite dimensional solution space by finite dimensional approximation space V_k such that $V_k \to H_0^1$ as $k \to \infty$.

Exercise: Suppose $\{e_i\}_{1 \leq i \leq N}$ is a basis for some finite dimensional approximation space V_k . Project u onto V_k :

$$u_k(x) = \sum_{i=1}^N c_i e_i(x), \quad c_i \in \mathbb{R}.$$

Show that taking as v in Eqn. (5.15) all the e_j , j = 1, ..., N, yields an algebraic linear system for the unknowns c_i !

Choose as $V_k = V_0 \oplus \bigoplus_{n=1}^k W_n$.

- Need multiresolution analysis defined on [0, 1]! Most constructions need to add boundary functions to avoid unwarrented boundary effects or need to periodize the problem.
- Due to its construction based on fractal functions, the DGHM multiwavelet is ideally suited for boundary value problems. Moreover, the DGHM multiwavelet can handle non-uniform geometries!
- Resulting matrix in linear system ill-conditioned.
- Preconditioning necessary; exact preconditioner known.
- Multiwavelet bases local bases (short support).
- Two parameters: scale and location.
- Ideal for detection of shocks and other singularities.
- Fast solvers for resulting preconditioned linear system.

6 Generalities

Biorthogonal Wavelets:

Instead of requiring

$$\langle \phi_{k\ell}, \phi_{k\ell'} \rangle = \delta_{\ell\ell'} I, \quad \langle \psi_{k\ell}, \psi_{k'\ell'} \rangle = \delta_{kk'} \delta_{\ell\ell'} I$$

 ϕ and ψ are to satisfy the biorthogonality conditions

$$\left[\langle \phi_{k\ell}, \tilde{\phi}_{k\ell'} \rangle = \delta_{\ell\ell'} I, \quad \langle \psi_{k\ell}, \tilde{\psi}_{k'\ell'} \rangle = \delta_{kk'} \delta_{\ell\ell'} I \right]$$
(6.1)

with respect to the dual bases $\{\tilde{\pmb{\phi}}_{k\ell}\}$ and $\{\tilde{\pmb{\psi}}_{k\ell}\}.$

Advantages:

- More flexibility.
- Optimal convergence rates for certain integral equations.
- Construction of second generation wavelets.
- Shift regularity and approximation order back and forth between bases and dual bases.

Oblique Wavelets:

Projection onto subspaces not orthogonal but parallel to certain subspaces. (Cf. [1])

References

- [1] A. Aldroubi, "Oblique and hierarchical multiwavelet bases," Preprint.
- [2] B. K. Alpert, "Wavelets and other bases for fast numerical linear algebra," C. K. Chui, ed. Wavelets A Tutuorial in Theory and Applications, 181–216, Academic Press, 1992.
- [3] M. F. Barnsley, "Fractal functions and interpolation," Constr. Approx. 2 (1986), 303-329.
- [4] G. Beylkin, "On the representation of operators in bases of compactly supported wavelets," SIAM J. Numer. Anal. 6 (6) (1992), 1716-1740.
- [5] G. Beylkin, R. Coifman, and V. Rokhlin, "Wavelets in numerical analysis," in *Wavelets and Their Applications*, G. Beylkin, R. Coifman, I. Daubechies, S. Mallat, Y. Meyer, L. Raphael, and B. Ruskai (eds.), Bartlett and Jones, Cambbrige, 1992, 181-192.
- [6] W. Cai and J. Wang, "Adaptive wavelet collocation methods for initial boundary value probelms of nonlinear PDE's'," SIAM J. Numer. Analysis 33(3) (1996), 937-970.
- [7] C. Chui, An Introduction to Wavelets, Academic Press, San Diego, 1992.
- [8] A. Cohen, I. Daubechies, and G. Plonka, "Regularity of refinable functions," *Preprint*.
- [9] W. Dahmen, "Wavelet and multiscale methods for operator equations," Preprint.
- [10] W. Dahmen and A. Kunoth, "Multilevel preconditioning," Numer. Math. 63 (1992), 315-344.
- [11] W. Dahmen and C. Micchelli, "Using the refinement equation for evaluating integrals of wavelets," SIAM J. Numer. Anal. 30(2) (1993), 507– 537.
- [12] W. Dahmen, A. Kunoth, and K. Urban, "A wavelet-galerkin method for the Stokes equation," preprint.

- [13] C. De Boor, R. A. DeVore, and A. Ron, "The structure of finitely generated shift-invariant spaces in $L^2(\mathbb{R}^d)$," J. Funct. Anal. 119 (1994), 37-78.
- [14] I. Daubechies, "Orthonormal bases of compactly supported wavelets," Commun. Pure and Applied Math. 41(1988), 909-996.
- [15] I. Daubechies, Ten Lectures on Wavelets, SIAM, Vol. 61, Philadelphia, 1992.
- [16] G. Donavan, J. S. Geronimo, and D. P. Hardin, "Intertwining multiresolution analyses and the construction of piecewise polynomial wavelets," SIAM J. Math. Anal. 27 (1996) 1791-1815.
- [17] G. Donavan, J. S. Geronimo, and D. P. Hardin, "Fractal functions, splines, intertwining multiresolution analysis and wavelets," *Proc. SPIE* Vol. 2303 (1994), 238–243.
- [18] G. Donavan, J. S. Geronimo, D. P. Hardin, and P. R. Massopust, "Construction of orthogonal wavelets using fractal functions," SIAM J. Math. Anal. Vol. 27, No. 4 (1996), 1158-1192.
- [19] D. L. Donoho, "Unconditional bases are optimal bases for data compression and for statistical estimation," Stanford University Technical Report No. 410, 1992.
- [20] D. L. Donoho and I. M. Johnstone, "Ideal spatial adaptation via wavelet shrinkage," Stanford University Technical Report, 1992.
- [21] M. Frazier, An Introduction to Wavelets Through Linear Algebra, book notes.
- [22] J. S. Geronimo, D. P. Hardin, and P. R. Massopust, "Fractal functions and wavelet expansions based upon several scaling functions," J. Approx. Th. 78(3) (1994), 373-401.
- [23] R. Glowinski, W. Lawton, M. Ravachol and E. Tenenbaum, "Wavelet solutions of linear and nonliner elliptic, parabolic and hyperbolic problems in one space dimension," Proceedings in Computational Mathematics (1991), 55-120.

- [24] T. N. T. Goodman and S. L. Lee, "Wavelets of multiplicity r," Trans. Amer. Math. Soc. 342(1) (1994), 307-324.
- [25] D. P. Hardin, P. Kessler, and P. R. Massopust, "Multiresolution analyses based on fractal functions," J. Approx. Th. 71 (1992), 104-120.
- [26] C. Heil, G. Strang, and V. Strela, "Approximation by translates of refinable functions," Numer. Math. 73 (1996), 75-94.
- [27] R. Q. Jia, "Refinable shift-invariant spaces: From splines to wavelets," Approximation Theory VIII, Vol. 2: Wavelets and Multilevel Approximation, (1995), 179-208.
- [28] G. Kaiser, A Friendly Guide to Wavelets, Birkhäuser, Boston, 1994.
- [29] S. Mallat, "Multiresolution approximation and wavelets," Trans. Amer. MAth.Soc. 315 (1989), 69-88.
- [30] P. R. Massopust, Fractal Functions, Fractal Surfaces, and Wavelets, Academic Press, San Diego, 1994.
- [31] P. R. Massopust, "Fractal functions and applications," Chaos, Solitons, and Fractals, 8(2) (1997), 171-190.
- [32] P. R. Massopust, "Generalized multiresolution schemes," Preprint.
- [33] P. R. Massopust, "A multiwavelet based on piecewise C^1 fractal functions and related applications to differential equations," Preprint.
- [34] P. R. Massopust, "Fractal functions and multiwavelets," Preprint.
- [35] Y. Meyer, Ondelettes et opérateurs, Hermann, Paris, 1990).
- [36] T. Nguyen and G. Strang, Wavelets and Filter Banks, Wellesley-Cambridge Press, 1995.
- [37] G. Plonka, "Construction of multi-scaling functions with approximation and symmetry," *Preprint*.
- [38] D. Roach, Multiwavelet Prefilters: Orthogonal Prefilters Preserving Approximation Order $p \leq 3$, Ph.D. Dissertation, Vanderbilt University, 1997.

- [39] W. So and J. Wang, "Estimating the support of a scaling vector," SIAM J. on Matrix Analysis and Applications, to appear.
- [40] V. Strela, Multiwavelets: Theory and Applications, Ph.D. Dissertation, M.I.T., 1996.
- [41] G. Strang, "Wavelets and dilation equations: A brief introduction," SIAM Review 31 (4) (1989), 614-627.
- [42] G. Strang, "Eigenvalues of $(\downarrow)2)H$ and convergence of the cascade algorithm," Preprint.
- [43] G. Walter, Wavelets and Other Orthogonal Systems with Applications, CRC Press, 1994.